

ENERGY DEMAND-AWARE OPEN SERVICES FOR SMART GRID INTELLIGENT AUTOMATION **SmartHG**

Project Overview

Enrico Tronci UNIROMA1

Università di Roma

Solintel

THE GREEN INDUSTRIAL

energía

SmartHG Project I

Work programme topic addressed by SmartHG:

- ► Challenge 6: ICT for a low carbon economy
- ▶ Objective: ICT-2011.6.1 Smart Energy Grids
- ► Target Outcome: d) Home energy controlling hubs that will collect real-time or near real-time data on energy consumption data from smart household appliances and enable intelligent automation.

Project implementation:

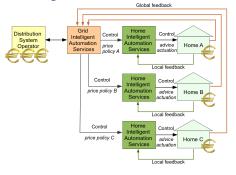
- ▶ WP1: Management
- ► WP2: System Specification
- ▶ WP3: Design of Home Intelligent Automation Services
- ▶ WP4: Design of Grid Intelligent Automation Services
- ▶ WP5: Evaluation
- ▶ WP6: Demonstration
- ▶ WP7: Dissemination & Exploitation

SmartHG Project II

Partners main focus:

- ► UNIROMA1 coordination, computation
- ► AU communication
- ► IMDEA power systems
- ► HMTI modelling
- ► ATANVO modelling
- ► PANPOW sensing
- ► SOLINTEL energy service consulting
- ► SEAS DSO, test-bed
- ► KAL test-bed
- ► MINSKENG DSO, test-bed
- ► DEVELCO sensing

SmartHG Objectives

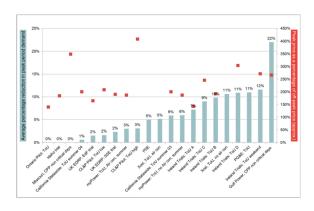

SmartHG has the goal of devising economically viable open services for Intelligent Home Automation

- ► Economically viable
 - Obstruction to overcome
 Technology available for commercial buildings is too expensive for residential users

► Openness to avoid vendor lock-in

SmartHG Hierarchical Approach

Intelligent Automation Services



To develop open software services yielding benefits to both

- Distribution System Operator (DSO)
 by optimizing operation of the grid and returning part of attained saving to residential users via favorable energy price policies
- Residential users
 reduce electricity costs by
 following DSO proposed price
 policies

Autonomous Demand Response (ADR)

Peak period demand reductions and peak to off-peak price differentials under ToU tariffs (UK Dept. of Energy & Climate change, 2012)

Little evidence on the impact of ADR incentives on customers

⇒ ADR moderately effective

SEAS-NVE ADR Pilot

SEAS-NV pilot study

Vind med nye elvaner (Win with new electrical habits)

- ► About 300 customers without electrical heating
- ▶ Pilot run from Oct 2013 to Oct 2014
- ▶ Pilot proposes to participants a Time of Usage (ToU) tariff:
 - ► Day (6am 5pm) = 0.20 EUR/KWh
 - ► Peak (5pm 8pm) = 1.07 EUR/KWh
 - ► Night (8pm 6am) = 0.0 EUR/KWh (electricity free at night!)

Nevertheless... only about 25% of electricity consumption has moved from peak hours to night accordingly to the gathered data

ADVANCED ADR Pilot

Citizens are ready for active demand BUT **only** if they manage it themselves

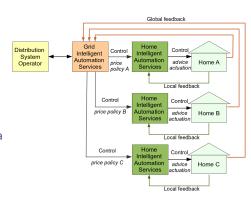
Business Issue

- We may deploy high-tech devices in each home to monitor and control energy usage
- Technically feasible
 BUT
 Economically uninteresting

⇒ Energy saving from a single residential home too small to provide an interesting business opportunity

Sensors/Actuators/Control cost: €€€

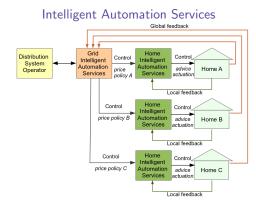
SmartHG Hierarchical Approach to DR

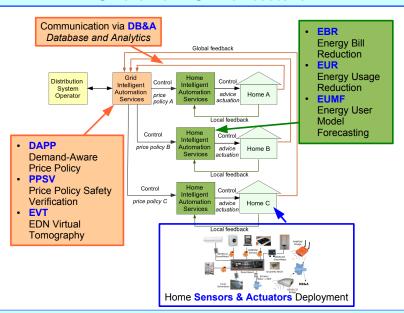

WHAT

- ► Demand-aware
- Combines ADR and DLC benefits
- Provides a viable business model

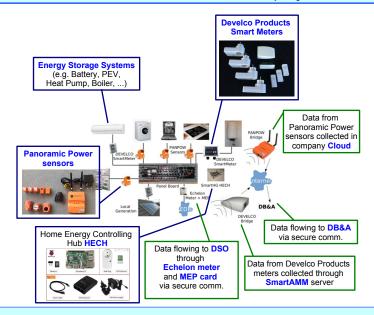
HOW

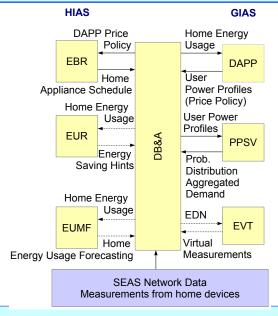
- ▶ Using energy demand (home meter level ⇒ no privacy issues)
- ► DSO computes fair power profiles to be followed by users
- Power profiles proposed to users via price policies
- Users follow price policies by using SmartHG services to manage home devices


Intelligent Automation Services


SmartHG Hierarchical Approach to DR

Advantages


- No home device data needs to be transferred to the DSO (as ADR)
 - ⇒ Security issues avoided
- ► DSO does not directly control home devices (as ADR)
 - ⇒ Safety issues avoided
- ► Home energy profile proposed by DSO (*soft* DLC)
- Home devices automatically managed by SmartHG services (soft DLC)


SmartHG IAS Architecture

Home Sensors & Actuators Deployment

IAS: Summing Up

SmartHG Test-beds

Svebølle, Kalundborg (Denmark)

Central District (Israel)

Integration Lab

- ► Test beds equipped with sensors and communication infrastructure for collection of energy related data
- ► SmartHG services run on current data measured from sensors
- ► SmartHG services manage Energy Storage Systems (ESS) within houses (e.g., Plug-in Electrical Vehicles, batteries, heat pumps)
- ► SmartHG services accessible via web by DSO & residential users
- ▶ We use IMDEA Smart Energy Integration Lab Micro Grid to carry out experiments with ESS
- ▶ We use test-beds data to drive Micro Grid electronics loads and generators

Thanks